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ABSTRACT: Pregnancy presents a unique risk to chemical Risk for pregnant researchers in the chemical laboratory
researchers due to their occupational exposures to chemical,

equipment, and physical hazards in chemical research laboratories HAZARD VULNERABILITY

across science, engineering, and technology disciplines. Under-
standing “risk” as a function of hazard, exposure, and vulnerability,
this review aims to critically examine the state of the science for the
risks and associated recommendations (or lack thereof) for pregnant
researchers in chemical laboratories (labs). Commonly encountered B

hazards for pregnant lab workers include chemical hazards (organic EXPOSURE

solvents, heavy metals, engineered nanomaterials, and endocrine .

disruptors), radiation hazards (ionizing radiation producing equip- ?

ment and materials and nonionizing radiation producing equip-

ment), and other hazards related to the lab environment (excessive noise, excessive heat, psychosocial stress, strenuous physical
work, and/or abnormal working hours). Lab relevant doses and routes of exposure in the chemical lab environment along with
literature and governmental recommendations or resources for exposure mitigation are critically assessed. The specific windows of
vulnerability based on stage of pregnancy are described for each hazard, if available. Finally, policy gaps for further scientific research
are detailed to enhance future guidance to protect pregnant lab workers.

1. INTRODUCTION including information on permissible exposure levels and
methods of gauging one’s actual exposure. For example, the
available resources often identify risks (e.g., “solvents”) without
much actionable information.” This may lead to unintentional
exposures to hazardous substances during early pregnancy,
which is often a more vulnerable time for miscarriages and
birth defects. Further, when pregnant researchers are told that
a hazard poses a “minimal” or “small” amount of risk (since it
is very rare or unlikely to be able to say something poses “zero”
risk), it still leaves a feeling of anxiety or uneasiness about their
work.® Finally, this creates a situation where each individual is
recreating a risk assessment rather than having the benefit of
previous efforts to identify and characterize hazards of concern.
As such, this review aims to review the potential risks for
pregnant researchers in a chemical lab, where a chemical lab is
defined as an industry or academic laboratory engaging in
primary research in fields like chemistry, engineering, or
medicine, but excluding biological work with substances such

There is substantial evidence showing that more diverse teams
produce more innovative work and have higher citation
rates.'~* Despite receiving approximately half of the science,
technology, engineering, and math (STEM) baccalaureate
degrees, women are increasingly underrepresented as career
stages advance, with particularly high attrition in the
midcareer—a time when many women have children.” For
pregnant laboratory (lab) workers, one component of this
“leaky pipeline” may result from uncertainty in the risks borne
by pregnant researchers among other challenges related to
childrearing while working in a research laboratory. This
notion is supported by a 2019 study by Cech and Blair-Loy
that showed 43% of female scientists left full-time STEM
employment after the birth of their first child, as opposed to
23% of male first-time parent scientists and 24% of childless
women scientists.’

While some organizations offer personalized risk assessments
for pregnant researchers to inform the development of a safe
work plan, this approach has limitations. First, pregnant Received: November 1, 2021
researchers may not want to disclose their pregnancy until a Published: February 8, 2022
later stage, leaving the task of identifying and assessing risks to
the pregnant researcher themselves. Further, information on
reproductive or developmental effects is scattered or opaque
for many hazards encountered in a chemical lab setting,
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Risk = f(hazard, exposure, vulnerability)

Less hazardous More hazardous

Less exposure

More exposure Less vulnerable More vulnerable

Figure 1. Risk associated with chemical laboratory work for pregnant researchers depends on the level of hazard, exposure, and vulnerability, where
each exists on a scale that contributes to overall risk. Types of hazards in a chemical lab include chemical and radiation hazards, among others. Main
routes of exposure are dermal, oral, and inhalation exposure, along with ambient exposure to hazardous environments such as radiation or sound. A
pregnant researcher and their developing fetus can be more or less vulnerable to certain hazards and exposures based on the progression of their

pregnancy.

Table 1. Adverse Effects and Outcomes Related to Hazards in Chemical Laboratories

Effect Definition
Reproductive Adverse effects on adult male and female sexual function and fertilitg; also
effects includes adverse effects on the development of the embryo/fetus."

Birth outcomes

Fetal effects
abnormalities (also called teratogenic effects).

Neonatal (and
beyond)
effects

Fertility effects

beyond 4 weeks of age into childhood.

(fecundity).

Maternal effects
secondary reproductive effects.

Final result from a fertilization event (also called pregnancy outcomes).

Adverse effects on fetal growth and organ or tissue development causing

Adverse effects observed during the neonatal period, immediately after birth to 4
weeks of age, due to exposures in utero; also noted are any significant effects

Adverse effects on adult male and female sexual function and fertility

Adverse effects on the health of the mother (often via stressors) that may have

Common outcomes

Encompasses birth outcomes and fetal, neonatal, and fertility
effects.

Embryonal or fetal resorption (disintegration and assimilation
of embryo/fetus in the uterus); spontaneous abortion or
miscarriage; preterm birth; stillbirth.

Organ malformations; dysmorphogenesis (formation of
abnormal tissue); cleft palate; intrauterine growth restriction;
neural tube defects.

Neonatal: Low birthweight; low Apgar score.

Beyond: reduced IQ; behavioral problems; autism.

Infertility; low sperm count; prolonged time to pregnancy;
irregular menstrual cycles.

Elevated maternal body temperature; early uterine
contractions; hypertension; gestational diabetes.

as pathogens or live organisms. By synthesizing and critically
assessing the state of science of lab environment exposures and
risks most relevant to embryonal/fetal development and
pregnancy outcomes, this manuscript aims at providing
resources to pregnant researchers as well as relevant
organizations to inform risk management, mitigation, avoid-
ance, and alternatives.

1.1. Risk for Pregnant Researchers. Risk can be
expressed conceptually as the following function of three
variables, known as “the risk equation”:

risk = f(hazard, exposure, vulnerability)

where hazard is an inherent property of the substance in
question, exposure depends on the time, dose, and type of
interaction with the substance, and vulnerability addresses
unique timeframes when susceptibility is heightened or
reduced (Figure 1).” Accordingly, an individual’s overall risk
can be reduced by minimizing any of the three variables by
eliminatin% the intrinsic hazard by working with a safe
chemical," limiting exposure through appropriate control
measures, or avoiding periods of increased vulnerability (e.g.,

pregnancy).

164

1.1.1. Hazard. Working in a chemical lab can include
working with hazardous substances, resulting in associated
risks for researchers, particularly those who are pregnant, upon
exposure. Commonly encountered hazards include chemical
hazards (e.g, organic solvents, heavy metals, engineered
nanomaterials, and endocrine disruptors), radiation hazards
(e.g, ionizing radiation producing equipment and materials
and nonionizing radiation producing equipment), and other
hazards related to the lab environment (e.g., excessive noise,
excessive heat, psychosocial stress, strenuous physical work,
and/or abnormal working hours). Each hazard, and preferably
the confluence of the hazards, should be evaluated for the
potential to initiate biochemical mechanisms of teratogenicity
and other adverse effects. Reducing hazard is the most
promising route to ensure low risk, as it is an intrinsic and
constant property of chemicals and processes, whereas
exposure control can fail and vulnerability is circumstantial."'
This approach is one of the key pillars of green chemistry
which aims to design safer chemicals, materials, and processes
by reducing or eliminating the use of hazardous substances
altogether.w_12 Therefore, implementing green chemistry

https://doi.org/10.1021/acs.chemrestox.1c00380
Chem. Res. Toxicol. 2022, 35, 163—198


https://pubs.acs.org/doi/10.1021/acs.chemrestox.1c00380?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.1c00380?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.1c00380?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.1c00380?fig=fig1&ref=pdf
pubs.acs.org/crt?ref=pdf
https://doi.org/10.1021/acs.chemrestox.1c00380?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Chemical Research in Toxicology

REVIEY

pubs.acs.org/crt

Maternal Development

Prenatal Development

Critical Stages

0 Week* Lot mensiual veriod For Adverse
q ® Last menstrual perios
1 Trimester P Outcomes
1
2 @ Ovulation ® Conception Germinal Zygote (fertilized egg) forms Wesameg dmiE
3 @ Zygote enters uterus Peri-implantation resorption or
@ Blastocyst impl_ants in. uterus - Elastocyst imp!ams in uterus - . implantation failure
4 outer cells begin forming placenta inner cells begin embryo formation
® Amniotic sac and fluid form
5 Embryonal Embryo forms « Neural tube forms
6 §
o
7 T
Organogenesis Critical organ
8 5 8 malformations
3 5
i %
10
2
1 § Fetal - Fetus forms
12 ® Fetus fills entire uterus o .
© Miscarriage; organ
13 ) w f A
14 2nd Trlmester malformations
15 Uterus continues to grow with %
16 fetal growth until delivery/birth E
o
12
17 s % B
18 g 5§ 3
19 Placenta fully forms = ¥ ©
20 % 5
21 g
22 Ears fully form and %
23 fetus begins hearing .§
24 Fetus viability (chance of g—
25 survival outside the uterus) o
26 Preterm delivery Preterm birth
- 3" Trimester
36 ]
g; l Early-term delivery
39 l Full-term delivery i
40 e Birth Birth
+ ® Low birthweight; low

® Maternal development stages
Maternal organ development
Fetal development stages
Fetal organ development

@ Adverse Outcomes

Figure 2. Important phases of maternal and prenatal development along with critical stages for when selected adverse outcomes can occur.
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Note: The common convention to track pregnancies is to start from the date of the last menstrual period instead of the date of fertilization (which
happens approximately 2 weeks later). The time in pregnancy is used instead of gestational age for ease of application and understanding of results,
and any scientific studies that use gestational age will be adjusted by two weeks to follow time in pregnancy based on last menstrual period. Further,
gestation in animal models is much shorter than human gestation, so equivalent time in pregnancy will be noted when discussing applicable

2
results.”

practices would directly benefit pregnant researchers in a
laboratory setting.

When examining hazards, numerous adverse effects related
to reproduction and pregnancy emerge, which can be
categorized into several adverse effects with common out-
comes (Table 1). While some effects could fall into several
categories (for example, low birth weight may be a birth
outcome or a neonatal effect), the categories defined in Table
1 will be used. Additionally, while not focused on fertility
effects, fertility is closely related to pregnancy and fetal
development, meaning that effects on fertility (both male and
female) are included when notable. Also, since it would be
dangerous and unethical to perform medical studies of hazards
directly involving pregnant women, the toxicological literature
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relies on observational human studies, in vitro human tissue
studies, and animal model studies (most commonly mice and
rats) to identify adverse effects. Animal studies are of great use
in modeling the toxicity of hazards as they allow for precisely
controlled studies permitting accurate determination of effects
and thorough physical examinations both pre- and post-
mortem.'>"* While assessing the results from animal studies, it
is important to note that these do not necessarily translate to
humans due to limitations in detecting certain adverse effects
in animal subjects, differences in receptor densities, unexpected
human toxicities, and interspecies differences in absorption,
distribution, metabolism, and excretion.'>™'* Knowing this, it
is still common practice to convert doses in animal studies to
appropriate human doses, regardless of exposure route, via

https://doi.org/10.1021/acs.chemrestox.1c00380
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Figure 3. (a) Basic structure of fetal and maternal organs with (b) showing the structures within the placenta and (c) showing the structure of
placental villi and the main mechanisms of transport across the placenta: (1) diffusion, (2) mediated active transport, and (3) vesicular
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transport.

allometric scaling, a calculation based on the normalization of
dose to body mass and surface area.'* The conversion is most
commonly applied by dividing animal “no observed adverse
effect level” doses with an animal specific correction factor
(e.g, 7.4 for mice, 6.2 for rats; other species available in
literature)'* into human equivalent doses (HEDs). Once the
HED is calculated, a safety factor—with the accepted, default
safety factor of 10—is included by dividing the HED by the
safety factor to reach acceptable starting doses for human
exposure where no effect is expected.'*

1.1.2. Exposure. Laboratory exposures for researchers can
be divided into chemical and nonchemical in nature. The three
main routes of chemical exposure are oral, dermal, and
inhalation.'”"* Since chemical laboratories with standard safety
procedures typically prohibit food or drink inside the lab and
require the use of personal protective equipment (PPE),
exposure via oral or dermal routes are anticipated to be
minimal. Therefore, inhalation is expected to be the most
relevant route of exposure followed by accidental dermal
absorption, yet this ultimately depends on specific lab setups
and materials used. Other nonchemical exposures include
radiation and excessive noise or heat. In situations where
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hazards cannot be eliminated or substituted—the preferred
approach—exposure can be moderated via engineering
controls, administrative controls, and PPE controls, in order
of decreasing effectiveness.'” Engineering controls isolate
researchers from hazards and include fume hoods, glove
boxes, and the enclosing and shielding of radiation producing
equipment. Administrative controls alter the procedures in
place to become safer, such as changing work schedules or
standard operating procedures. PPE is the final safety measure,
which may include the use of respirators, special chemical-
resistant gloves, and radiation-blocking lead aprons. Minimiz-
ing exposure for pregnant researchers may include several or all
these controls, but hazard reduction should always be
prioritized before exposure control measures are weighed.

Important to note, neonatal exposure of infants to both
chemicals and radiation can also occur via breast milk
stemming from maternal exposure.l()‘20 This exposure route
is important for breastfeeding researchers to consider. As such,
effects from lactation exposure are included when notable but
are not the focus of this review.

1.1.3. Vulnerability. Risks stemming from various hazards
change over the course of a pregnancy, resulting in varying

https://doi.org/10.1021/acs.chemrestox.1c00380
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windows of vulnerability for pregnant researchers. The rapid
changes occurring in both maternal and fetal organs over the
course of a pregnancy from conception to birth alter the
susceptibility to certain hazards and the severity of negative
outcomes (Figure 2). For example, the placenta (technically a
fetomaternal organ) alters the transport of some chemical
hazards, such that for certain chemicals vulnerability would be
greater in the time before placental formation but reduced
afterward; a zygote or embryo is more vulnerable than a fetus
to radiation hazards, as its lower bodyweight results in higher
relative dose and to chemical hazards due to the critical
development occurring during those stages; high radiation
exposure during the first two weeks after conception is likely to
induce a miscarriage, while during organogenesis, the critical
period where human organs begin to form, malformations are
the more likely outcome."

2. LABORATORY CHEMICAL RISK

The concern with chemicals and chemical processes toward
pregnancy outcomes arises from effects on both maternal and
fetal health. Chemicals can impact maternal health via
endocrine disruption, hypertension, or deficiencies, among
others, and can impact fetal health—both directly and
indirectly—via passage through or accumulation in the
placenta causing oxidative stress, endocrine disruption, or
alterations in gene exzpression and cell cycles, among many
other possible effects.”*>’ In the following discussion, both
oxidative stress and endocrine disruption are identified
frequently as main underlying biochemical mechanisms of
teratogenicity from exposure to certain chemicals, as they can
interfere with critical developmental signaling and response
processes. Oxidative stress occurs when xenobiotics interfere
with redox-sensitive signaling pathways.”® Prompted by
reactive oxygen species (ROS) produced by natural electron
leakage in mitochondria or various oxidases, redox switching of
thiol redox couples tells cells in a developing fetus when to
proliferate, when to differentiate, and when to begin apoptosis
(programmed cell death). Some chemical hazards also have the
potential to produce ROS, which when exposed to a
developing fetus, can cause the misregulation of redox couples
and incorrect signaling of cell activity. In addition, excess ROS-
producing oxidative stress can lead to macromolecule and
protein damage, lipid peroxidation, DNA oxidation, and
necrosis (unprogrammed or accidental cell death).”® Endo-
crine disruption occurs when xenobiotics mimic or interfere
with hormone activity in the body.”” Because endocrine-
disrupting chemicals are a class of emerging chemicals of
concern due to their effects on reproductive health of the
mother, the father, and the fetus, they are discussed in detail as
a chemical class of their own in Section 2.4.

Following an exposure in the lab, one of the most significant
concerns for fetal health is whether or not the chemical crosses
the placenta to the developing fetus (Figure 3a,b).”"** When
fully formed, the placenta lessens fetal exposure through both
retention and detoxification of xenobiotics. However, some
xenobiotics have the ability to pass through the placental
membranes, similar to nutrients, through three major
mechanisms: diffusion, mediated active transport, or vesicular
transport (Figure 3¢).”" Diffusion of chemicals from maternal
blood into fetal blood can occur either by direct diffusion,
where chemicals follow Fick’s law of diffusion and are driven
across the placenta and cell membranes through concentration
gradients, or passive diffusion following paracellular passage,
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where chemicals pass through the space between placental
cells, and then into fetal blood through passive diffusion.*’**
Diffusion occurs mainly for small, relatively hydrophobic
molecules, like respiratory gases and other hydrophobic
chemicals.”’ Mediated active transport employs transporter
proteins to facilitate the exchange of hydrophilic and charged
molecules and has increased kinetics relative to diffusion.”” For
molecules too large to be transported by either diffusion or
transporter proteins, vesicular transport through the membrane
can occur by endocytosis, where a macromolecule in maternal
blood is engulfed in the membrane, which pinches off to form
a vesicle that passes through the membrane and subsequently
releases the macromolecule into fetal blood.”"*

2.1. Organic Solvents. 2.1.1. Hazard. Organic solvents
are mostly carbon-based chemicals that are used ubiquitously
in chemical laboratories for various applications including
reactions, extractions, separations, cleaning, and more. Organic
solvents often top the list of occupational hazards for pregnant
researchers, as they tend to be volatile even at room
temperature and many are known carcinogens, neurotoxins,
and reproductive hazards.”® “Solvents” as a general hazard are
linked to negative reproductive effects like miscarriage,
stillbirth, preterm birth, low birth weight, and birth defects
in several population-based occupational studies.””> As a
result, known teratogenic effects in humans tend to rarely be
specific to a single solvent, but rather to a mixture (also see
Section S). When working with several solvents simulta-
neously, it is hard to determine which specific solvent was
associated with the observed effect in human studies.’
Therefore, information on specific solvents relies heavily on
animal studies as toxicity indicators.

Incorporating both human and animal studies, the Global
Harmonization System (GHS) compiles information on
reproductive toxicity into classifications based on available
evidence, where GHS classification category 1A is a known
human reproductive toxicant based on human studies, category
1B is a presumed human reproductive toxicant based on
mostly animal studies, and category 2 is a suspected human
reproductive toxicant based on limited evidence in either
human or animal studies.'® Table 2 compiles GHS
classifications along with additional literature review on
adverse reproductive effects for 50 common organic solvents.
The 50 listed organic solvents were chosen as they represent
the combined list of the top 25 most commonly used organic
solvents based on a solvent-usage analysis by Jordan et al. of
three journals: Angewandte Chemie (issue 1 in 2019), Organic
Process Research and Development (all 2019 issues), and Journal
of Medicinal Chemistry (issues 1 and 2 in 2019) along with a
few other known problematic solvents’’ representing most
solvents a pregnant researcher is likely to encounter. Additional
information on other solvents can be accessed in searchable
online databases, such as the European Chemicals Agency’s
chemical database or the Agency for Toxic Substances and
Disease Registry’s toxicological profiles, among
others."”'®**~*! Notably, many compounds in Table 2 are
listed as “not a GHS listed reproductive hazard” (Table 2).
This does not mean that they are safe or not reproductive
hazards, but rather, that insufficient information is available for
classification, and more research is needed to make a
determination.'”*® Using the GHS classification and studies
showing adverse effects, hazardous solvents can be identified
and prioritized for elimination or substitution with potential
alternatives in an effort to reduce risk. Recent green chemistry-
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Table 3. Common Heavy Metals Encountered in a Chemical Laboratory and Their Reproductive Effects Based on Information
from Respective Toxicological Profiles from the Agency for Toxic Substances and Disease Registry'® and Other Literature”

Metal

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Cobalt
(stable)

FR

BO

FR

BO

FR

BO

FR

BO

FR
BO

FR

BO

FR

BO

Adverse effects

Limited evidence of adverse effects dependent on form of aluminum. No observed maternal toxicity, embryotoxicity, or teratogenicity of
aluminum hydroxide (rats and mice, oral) while other forms induced developmental alterations (rats and mice, aluminum chloride,
aluminum nitrate, and aluminum lactate, oral).”’

Fetal skeletal variations, particularly with bioavailable forms of aluminum (rats and mice, aluminum nitrate and citrate, oral).'®

Adverse neurobehavioral and immune system effects (mice and rats, oral).'®%’

No studies on reproductive effects in humans.

No associations with adverse fertility effects (multiple studies, animals, oral).

No histological changes in reproductive tissues (rats and guinea pigs, 6.1 mg Al/m® as aluminum chlorhydrate over 6 months, inhalation)."®

Limited evidence as studies are not high quality.

Increased incidence of spontaneous abortion (human occupational exposure, exposure scenario not clearly described, dust containing metallic
antimony, antimony trioxide, and antimony pentasulfide, inhalation)."

No associations with antimony levels in cord blood and adverse pregnancy outcomes (human epidemiology study).'®
No associations with neural tube defects or structural abnormalities (human epidemiology study, antimony in drinking water).'®

No overt developmental effects observed for offspring (human occupational exposure, exposure scenario not clearly described, dust
containing metallic antimony, antimony trioxide, and antimony pentasulfide, inhalation{lg

Decreases in pup growth and alterations of the cardiovascular system (rats, 0.7 mg Sb/kg/day as antimony trichloride, antimony exposure.'®

Increased incidence of menstrual disturbances (human occupational exposure, exposure scenario not clearly described, dust containing
metallic antimony, antimony trioxide, and antimony pentasulfide, inhalation)."

Adverse effects on ability to conceive in females (rats, inhalation).'®
No alterations in sperm parameters (rats, antimony trioxide or antimony potassium tartrate, oral). 18

Significant increased incidence of miscarriages, stillbirths, preterm births (human population study, inorganic arsenic, oral exposure from
drinking water; ' 6 human epidemiological studies, inorganic arsenic, inhalation).

Limited studies on increased risk of spontaneous abortion to occupational exposure of arsine gas (humans, inhalation).*

Fetal malformations including congenital heart and neural tube defects (humans, inorganic arsenic).'”*"”

Fetal malformations including delayed ossification and irregular palatine rugae (mice, rats, and rabbits, methyl arsenates, oral)."®

Low birth weight (human population study, inorganic arsenic, oral exposure from drinking water; human epidemiological studies, inorganic
arsenic, inhalation).!

No histological damage to reproductive tissues (animals, methyl arsenates, oral)."®

Increased risk of gestational diabetes (humans, oral drinking water).”*

Limited evidence as studies are not high quality.

Low birth weight (rodents, 180—200 mg barium/kg/day for 30 days of barium chloride, oral, not high quality study)."®

Lower risk of malformations with higher banurn levels, (human statistical study, barium in drinking water, conclusions are limited as the
exposure scenario was not clearly described).'

No adverse developmental effects (mice, up to highest dose of 200 mg barium/kg/day, oral)."®

Adverse effectg on male and female fertility with inhalation exposure (study of suspect quality), and following oral exposure studies are
contflicting."

No alterations in sperm parameters (rats and mice, barium in drinking water for 60 days, oral)."®

Increased fetal mortality and stillbirths (rats and mice, beryllium nitrate, beryllium oxide, and beryllium chloride, injection)."®

No adverse developmental effects (dogs, beryllium sulfate in diet)."®

Behavioral abnormalities from beryllium crossing placenta and reaching fetus (mice, injection).'®

No adverse fertility effects (dogs, beryllium sulfate in diet; rats, beryllium sulfate in drinking water; rats, beryllium oxide, injection).'®
Embryonic death (rats, injection).””

Malformations (mice, rats, and hamsters, injection).””

Low birth weight”®”” and birth length'*”'*" (humans).

Retardation (mice and rats, injection),27

Endocrine disruptor and metalloestrogen causing female fertility effects (humans and rats, oral).'®'%*

Inconclusive evidence of effect on male fertility with some studies showing effects and others not observing effects (humans, animals)."®
Increased miscarriage (rats and mice, Cr®", oral).'®'%?

Abnormal skeleton and reproductive system development (mice, Cr®* as potassium dichromate and Cr** as chromium chloride,
injection).'®

No developmental effects (rats, 1806 mg Cr**/kg/day as chromium oxide for 60 days before mating and throughout the gestational period,
oral)."®

Limited human evidence: inverse correlatlon between blood Cr levels and sperm count (human occupational exposure, exposed to Cr®" for
1-15 years in an electroplating factory).'’

Inconclusive evidence in animal studies: adverse male fertility effects including reduced sperm mobility, sperm damage, and sperm death
(m61ce, monlkeys, rats, oral);'#'** adverse female fertility effects (mice, Cr** and Cr®, oral); no adverse reproductive effects (mice, Cr** and
Cr®, oral).

Complications during pregnancy and childbirth (toxicosis and postnatal hemorrhage) (humans occupational exposure, dichromate
manufacturing facility, Cr®*)."

Maternal and fetal lethahty at high doses, lower dose had significant increases in fetal mortality (rabbits, > 38 mg cobalt/kg/day cobalt; 7.6
mg cobalt/kg/day)."®

No developmental effects on human fetuses following treatment of pregnant women in third trimester (human, of 0.6 mg Co/kg/day of
cobalt chloride for 90 days)."

Effects on fetal skeletal formation (mice fetuses, 5 mM cobalt chloride, injection).27
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Table 3. continued

Metal

Copper

Gallium

Indium

Lead

Manganese

Mercury

Nickel

FR

BO

FR

FR

BO

FR

BO

FR

FR

BO

FR

BO

s}

Adverse effects

No teratogenic effects (rats and mice, less than 38 mg cobalt/kg/day of cobalt sulfate; rats and mice, 24.8 mg cobalt/kg/day during gestation
days 6—15 and 81.7 mg cobalt/kg/day during gestation days 8—12; mice, 5.4 or 21.8 mg cobalt/kg/day during gestation day 14 through
postnatal lactation day 21)."*

Adverse effects on postnatal survival and development of pups, but was accompanied by overt maternal toxicity (rats, 5.4 or 21.8 mg cobalt/
kg/day during gestation day 14 through postnatal lactation day 21, oral).”’

Testicular degeneration and atrophy (rats and mice, 13 mg cobalt/kg/day cobalt chloride, chronic ingestion).'®

As an essential trace element, too low levels of Co in maternal blood were connected to pregnancy-induced hypertension and increased risk
of preterm birth.

Some studies ha\914e suggested a link between copper levels in human maternal blood and spontaneous abortion, but others have not found
such evidence.

Malformations (rats and mice, copper sulfate and copper acetate, ingestion).”’
Significantly reduced sperm motility (human in vitro studies, metallic copper and copper ions)."**’

Sexual impotence (human occupational exposure, male workers, 111—434 mg/m?> copper dust, study suspect in quality as there was no
control group).

Effects on sperm (rats, copper chloride, inhalation)*” and negative effects on male sexual organs (rats, 0.95 or 1.4 mg Cu/kg/day for 26 days,
injection).

No fertility effects (mink, 12 mg Cu/kg/day as copper sulfate in diet) or reproductive tissues (male and female mice and rats, 66 and 68 mg
Cu/kg/day or 398 and 536 mg Cu/kg/day, respectively, oral).'®

Gestational diabetes and hypertension linked to higher levels of copper in maternal blood (human).”*

Reduced fetal weight, increased skeletal variations, and decreased number of viable implants at levels where maternal toxicity was observed
(mice and hamsters, 12.5—100 mg/kg/d of gallium and gallium nitrate, injected).

Limited evidence of male reproductive toxicity (rats and mice, gallium arsenide) but occug)ational exposures via inhalation of gallium arsenide
are argued to not be primary contributors to male reproductive toxicity in humans.'

Recommended in report b¥ the Health Council of The Netherlands to classify indium (III) salts as presumed human reproductive toxicants
based on animal studies.'*°

Increased resorptions and stillbirths (mice and rats, and rabbits, indium trichloride, oral)."*®

External malformations and skeletal malformations (mice and rats, and rabbits, indium trichloride, oral; mice and rats, hamsters, indium
trichloride, indium nitrate, injection)."®

No adverse developmental effects (mice and rats, up to 100 mg/m® indium phosphide, inhalation).'*®

Recommended in report by the Health Council of The Netherlands to classify indium phosphide and indium arsenide as suspected human
reproductive toxicants based on animal studies.'*’

Decrease in weight of male reproductive organs and atrophy of male and female reproductive organs (rats and mice, indium phosghide,
inhalation; hamsters, indium phosphide, intratracheal instillation; rats and hamsters, indium arsenide, intratracheal instillation)."”

No effects on ovulation, fertilization, or male tissues or reproductive parameters (mice, up to 250 mg/kg/day indium trichloride, oral).'®°

27,102,107

Some evidence of higher risk of spontaneous abortion, miscarriage, stillbirth, preterm delivery®>*'°® (human epidemiological

studies, <10 pg/dL Pb in blood)."®

Malformations in animal models (birds, fish, rodents) but not in humans.””'*

Low birth weight (human epidemiological studies, <10 ug/dL Pb in blood).'®%>?*1%¢

Neurodevelopmental im airment, increased risk of developmental delay, reduced IQ, and behavioral problems later in life (humans, S—10
ug/dL Pb in blood'?”).! 711111

In males, reduced sperm count and sperm damage, reproductive hormonal alterations, and reduced fertility (humans — numerous
epidemiological studies,

<10 ug/dL Pb in blood) and more severe effects inclu(ging decreased fertility and histopathological damage to testes (a few human

epidemiological studies, > 10 ug/dL Pb in blood).'®?:

In females, inconsistent results, some reproductive hormonal alterations, decreased fertility, and early onset of menopause, others no adverse
effects (human epidemiological studies, <10 ug/dL Pb in blood)."®

. . . . . 18
No increases in birth defects observed (human occupational exposure, animals).

Adversel 8elfgezcts on neurological structures causing postnatal motor-, cognitive-, and behavioral impairments (human, airborne, drinking water,
diet)."™

Unusually high incidence of infant mortality (one human study, manganese in drinking water, unclear whether deaths directly attributable to
manganese exposure).

Infant height and weight negatively correlated with blood maternal manganese levels.'"

Loss of sex drive and low sperm count (human occupational exposure, inhalation).'®

Sperm damage and adverse changes in male reproductive performance (animals, diet)."®

Little evidence of impairments in female fertility — decreased number of offspring (one rodent study, oral exposure before pregnancy).'®

Increased rate of spontaneous abortions or resportions (human, mercuric chlorideg hamsters, inorganic mercury; rats, metallic mercury
vapors, inhalation; mice and rats, guinea pigs, monkeys, organic mercury, oral).

Malformations (rats, metallic mercury vapors, inhalation).'®

Neurological darrllgge and adverse effects central nervous system (humans, methylmercury; mice and rats, hamsters, guinea pigs, organic
mercury, oral).”"

No significant effect on male fertility (human occupational exposure, metallic mercury).'®

Adverse effects on male fertility (animals, methylmercury, oral) and adverse effects on female fertility (rats and monkeys, methylmercury,
oral).

Increased rate of spontaneous abortions (16% versus 8.5% in compared group of pregnant construction workers; human occupational

. . . 3 . . I 18

exposure at nickel refining plant, 0.08—0.196 mg Ni/m’, primarily as nickel sulfate).

Increased rate of malformations (17% versus 6% in compared group of regnant construction workers; human occupational exposure at
nickel refining plant, 0.08—0.196 mg Ni/m®, primarily as nickel sulfateg.]

Decreased birth weight (rats, 1.6 mg Ni/m?® as nickel oxide 23.6 h/day on gestation days 1—21), although no effect at 0.8 mg Ni/m>"®
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Table 3. continued

Metal

Palladium

Platinum

Selenium

Silver

Strontium

Tellurium

Thallium

Tin

Titanium

Uranium

FR

FR
BO

FR

BO

FR

BO

FR

FR

BO

FR

Fr

BO

FR

Adverse effects

Limited evidence for male fertility effects including histological alterations, decreases in sperm concentratlon, motlhty, and abnormalities, and
decreases in fertility (mice and rats, nickel subsulfide, nickel sulfate, nickel chloride, nickel nitrate, oral)."®

Not enough good evidence on fetal effects.'*

No apparent teratogenicity in one low quality study (chicken embryos, 20 mg/egg of palladium(II) chloride, injection)."*

Limited evidence of adverse effects on testes and sperm in low quality studies (mice and rats, 0.02 mmol palladium(II) chloride, injected).''*

Increased fetal mortality (rats, 13 mg/kg of cisplatin: Pt(NH;),Cl,, drug for cancer treatment).''>"'¢

No fetotoxic effects observed (rats, platinum metal, PtCl,, PtCl, in diet).!"®

Reduced birth weight (rats, 200 mg Pt/kg Pt(SO,), in diet; rats, Na,PtCl;).""

Developmental toxicity (500 mg/kg/d of Pt-siloxane, Karstedt catalyst).'"®

Adverse effects on male fertility, known effect with cisplatin; limited data for other platinum compounds (rats, 9—18 mg/kg platinum chloride
injection; rats, 1000 #M hexachloroplatinate or tetraammineplatinum(II) chloride, injection)."

No adverse effects on male fertility (rats, up to 1000 zM hydrogen hexachloroplatinate; human sperm, metallic platinum).''>'1¢

No change in pregnancy outcomes (ewes, 24 ppm selenium as sodium selenate in diet)."*

Excess selenium is a demonstrated teratogen in birds, effects include reduced hatchability, grossly deformed embryos 1ack1ng eyes and beaks
deformed wings and feet (chick, coot, duck, stilt, and grebe embryos, selenium as sodium selenite or sodium selenate in diet or injection)."

No clear evidence linking selenium exposures to teratogenic effects in mammals."®

May interfere with normal fetal development and result in malformations (sheep and cattle, high seleniferous diets)."®
No studies on developmental effect from exposure via inhalation, oral, and dermal exist in humans.'®

Silver in drinking water linked to reduced volume of certain well defined brain regions (neonatal rats)."®

No evidence to support reproductive effects in humans from exposure via inhalation, oral, and dermal.'®

Temporary histopathological damage to testicular tissue and effects on sperm morphology (male rats, silver nitrate, injection,)."®
Termination of pregnancy (monkeys, silver nitrate, injection)."®

No teratogenic effects (rats, 82 mg strontium/kg/day as strontium nitrate, injection)."®

Increased incidences of adverse pregnancy outcomes (mortality from developmental anomalies, chromosomal anomalies, labor complications,
and other unspecified perinatal conditions; humans, radioactive strontium-90)."*

Teratogenic effects (skeletal abnormalities) on the fetus from exposure to high doses during gestation (mice and rats, radioactive strontium-
90, injection)."

Impaired bone development (rickets) at high doses in young children (human, stable strontium, oral, no information available on gestational
or neonatal exposure effects). 1

Limited evidence on the reproductive toxicity of stable strontium in humans; not directly harmful to human sperm (human sperm, strontium
chloride, in vitro).'*

Adverse reproductive effect from injected radioactive strontium.'®
Increase rate of fetal death and evidence of selective accumulation in the testis (male mice, radioactive strontium-90, injection).'®
Reduced number of oocytes, reduced reproductive capacity of offspring (female pregnant mice, radioactive strontium-90, injection)."*

Recommended in report by the Health Council of The Netherlands to be classified as a presumed human reproductive toxicant based on
animal studies.

Increased incidence of hydrocephalus and malformations (rats, rabbits, tellurium in diet).""”
Increased embryo lethality, dose-related growth retardation and growth inhibition (cultured rat embryos, 10—100 pg/mL thallium).'®

Reduced fetal weight, hydronephrosis, and absence of vertebral bodies (pregnant rats, injection of 2 mg thallium/kg/day as thallium
sulfate).
No human data but animal data suggests susceptibility of male reproductive system to thallium.'®

Decreased sperm motility, inhibition of f- glucuromdase activity and histopathological alterations of testes (rats, 0.74 mg thallium/kg/day as
thallium sulfate administered in drinking water)."®

Crosses human placenta but data is limited regarding developmental effects. Existing data suggests it might be a potential developmental
neurotoxicant.

Causes alterations in the functional competence of the nervous system, impairment of learning observed after prenatal exposure (rats, 0.08

mg thallium/kg/day thallium sulfate)

Embryonic and fetal death at maternal toxic doses (rats, organotin compounds such as triphenyltin, dibutyltin, dioctyltin- S,S"-bis
[isooctylmercaptoacetate].'**

Decreased fetal growth, reduced fetal ossification and other malformations at doses nontoxic to the mother and fetal growth suppression and
cleft palate at maternal toxic doses (rats, organotin compounds such as triphenyltin and dibutyltin).'**

Testicular degeneration (rats, tin(II) chloride 10 g/kg for 13 weeks in diet).''®

Abnormalities in the testes and ovaries (rats, triphenyltin hydroxide, oral).'*®

No reproductive effects in humans reported from inhalation, oral or dermal exposure to titanium tetrachloride.'®

No histopathological alterations in the testis and epididymis (male rats, up to 40 mg/m3 titanium tetrachloride)."®

No studies on developmental effects in humans or animals from inhalation, oral or dermal exposure to titanium tetrachloride.'®

Decrease in litter size, increased late resorptions and decreased live fetuses, 1ncreased neonatal death per litter, decreased day 21 viability
index, reduced pup’s weight (mice and rats, uranyl nitrate or uranyl acetate, oral)."

Reduced body weight and length, increases incidences of malformation and developmental variation (mice, uranyl acetate dihydrate, oral).””
Delayed hyperactivity, decreased spatial working memory (rats, enriched uranyl nitrate, oral)."®
Testicular degeneration linked to high oral doses (male rats, 331 mg U/kg/day as uranyl nitrate hexahydrate for 2 years in diet)."®

3-fold increase in plasma testosterone, reduced pregnancy rate, disturbance in ovarian folliculogenesis, increased proportion of
morphologically abnormal oocytes, increased oocyte dysmorphism and micronuclei in cumulus cells (mice and rats, 1.9—11.2 mg U/kg/day
as uranyl nitrate or uranyl acetate, oral).
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Table 3. continued

Metal Adverse effects
BO Reduced pup weight and length, decreased viability, increased gross, skeletal and visceral anomalies, decreased pup body weight (mice and
rats, sodium metavanadate, ammonium metavanadate, vanadyl sulfate).
Vanadium F Embryotoxicity and fetotoxicity (mice and rats, and hamsters, ingestion).'"”
FR Decreased fertility, sperm count, and motility (mice and rats, 31 mg V/kg/day vanadyl sulfate ammonium metavanadate, 25 mg V/kg/day
sodium metavanadate).
One adverse effect reported from oral consumption of 0.6 mg zinc/kg/day as zinc sulfate during third trimester (4 women study: 3 premature
5O births, 1 still birth).
Increased fetal resorption, reduced fetal weight, altered tissue concentration of fetal iron and copper, reduced growth in offspring, and still
births (rats, dams, mice, zinc oxide, zinc carbonate, >200 mg zinc/kg/day in diet)."®
i N No studies on developmental effects in humans or animals after inhalation exposure to zinc exist.'®
Inc
No reproductive effects in humans after inhalation, oral (0.3 mg/kg/ day).18
No adverse effect on mammary glands, ovaries, fallopian tubes, or uteri (mice and rats, and guinea pigs exposed to 119.3 or 121.7 mg zinc/m?>
FR as zinc chloride smoke for 20 weeks).

Altered sperm chromatin structure, decreased live pups per litter in all groups of treated rats, increased preimplantation loss, no reproduction
in females (rats, 7—25 mg zinc/kg/day zinc chloride, 200 mg zinc/kg/day zinc sulfate, 250 mg zinc/kg/day zinc carbonate oral).'®

“Adverse effects: BO: Birth outcome; F: Fetal effects; N: Neonatal and beyond effects; FR: Fertility effect; M: Maternal effects.

inspired solvent selection guides that incorporate hazard
considerations have been put forward by the ACS Green
Chemistry Institute pharmaceutical roundtable and the
European public—private partnership, CHEM21, to identify
safer alternatives that retain function.*>**

2.1.2. Exposure. Exposure time and concentration are
significant in determining risk associated with organic solvent
exposure.” For example, in a 1967 Russian epidemiologic
study focusing on pregnant anesthesiologists exposed to ethyl
ether and other agents, 18 out of 31 pregnancies ended in
spontaneous abortion,>* but those with higher exposure (>25 h
per week) experienced abnormal pregnancies, while those with
lower exposure (<15 h per week) experienced normal
pregnancies (this study has limitations in that these women
were exposed to different anesthetics and concentrations that
may have also contributed to birth outcomes).”* The Canadian
Centre for Occupational Health and Safety, United States
Occupational Safety and Health Administration (OSHA), and
the United States National Institute for Occupational Safety
and Health (NIOSH) have outlined a series of recommenda-
tions to minimize exposure to organic solvents,”~** although
these are not specific to pregnant researchers. These
recommendations include substitution with less hazardous
solvents when possible, using the smallest amount of the
solvent when substitution is not available and using solvents in
appropriate fume hoods or, if not possible, in other well-
ventilated areas to avoid inhalation.**~** If exposure cannot be
avoided, a respirator with an appropriate cartridge for vapors of
the organic solvent in question should be worn to protect
against accidental inhalation. For some common organic
solvents, OSHA has occupational permissible exposure limits
for inhalation defined as average parts per million (ppm)
concentration in air over an 8 h work day, also called 8 h time-
weighted average (TWA).*” These permissible exposure limits
are for the general worker, but can be used as a first step for
addressing laboratory inhalation exposure while keeping in
mind that the fetus is often more vulnerable. To avoid dermal
exposure, researchers should wear the appropriate type of
solvent-resistant gloves and protective clothing. Though
popular in laboratories, nitrile or latex §loves do not offer
effective protection against all solvents.*"*> Nitrile gloves are
generally suitable for incidental contact with chemicals, but
permeability varies by solvent (e.g, little protection from
chlorinated solvents), while latex gloves provide little
protection from organic solvents.””* NIOSH and OHSA
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recommend checking the efficacy of the glove against the
specific chemical in readily available glove chemical compat-
ibility charts.*"*> Depending on the solvent(s), a combination
of several gloves may be necessary.”"*

2.1.3. Vulnerability. Clinical trials and retrospective
observational studies conducted thus far on harmful impacts
of organic solvent exposure during pregnancy have been
limited to understanding overall effects when exposed to
organic solvents throughout pregnancy. There are still many
unknowns about the specific timeframes when solvents are
most problematic to the health of the fetus.”®®* The first
trimester represents a critical period in fetal development,
suggesting this may be a time to avoid dangerous organic
solvents.’® McMartin et al. observed a statistically significant
relationship between exposure to organic solvents in the first
trimester of pregnancy and fetal malformation, yet did not
specify which solvents in particular are especially hazardous.”
Thulstrup and Bonde found that there was an increased level
of neural tube defects in newborns who were exposed to glycol
esters during the first trimester of pregnancy.85 However, it is
important to be mindful of organic solvent exposure
throughout the entire pregnancy, as research is still unclear
about specific windows of vulnerability for most organic
solvents.

2.2. Heavy Metals. 2.2.1. Hazard. Metals, in various forms
(e.g, elemental, salts, organometallics), are used in chemical
laboratories, often as catalysts or reagents. Heavy metals can be
defined as metals whose density is five times larger than that of
water (i, specific gravity > S), among others, but the
designation “heavy metals” is often used as a catch-all term for
a dense metal that is toxic at low concentrations, including
lighter metals like aluminum (Al), some metalloids like arsenic
(As) and nonmetals like selenjum (Se), while excluding
nontoxic high-density metals like gold (Au).***® Some heavy
metals such as cobalt (Co), copper (Cu), chromium (Cr), iron
(Fe), manganese (Mn), nickel (Ni), selenium, and zinc (Zn)
are essential minerals and trace elements that are found
naturally in the human body, while others serve no known
biological function. Exposure to essential metals in higher than
recommended doses can have deleterious health effects
including adverse reproductive outcomes,”*>”"” while lower
than recommended doses can increase risk of negative birth
outcomes.”® The placenta actively transports Cu, Zn, and Fe,
such that increasing metal levels in maternal blood also result
in higher levels in the fetal blood.”

https://doi.org/10.1021/acs.chemrestox.1c00380
Chem. Res. Toxicol. 2022, 35, 163—198


pubs.acs.org/crt?ref=pdf
https://doi.org/10.1021/acs.chemrestox.1c00380?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Chemical Research in Toxicology

pubs.acs.org/crt

REVIEY

Of the heavy metals, arsenic, cadmium (Cd), chromium,
lead (Pb), and mercury (Hg) are the most studied due to
exposures in residential and occupational settings.”>">°™
Mechanisms of toxicity of heavy-metal exposure include
oxidative cell stress (As, Cd, Cr, Pb), neurological damage
(Hg, Pb), DNA damage (As, Cd, Cr), altered glucose
metabolism (As), altered calcium metabolism (Cd, Pb), and
general interference with essential elements inside the body
(Cd, Hg).”® Generally speaking, heavy-metal toxicity depends
on aqueous solubility, oxidation state, and bioavailability, all of
which depend on the form of metal.*” For example, mercury in
its organic form such as methylmercury (CH;Hg"; as opposed
to elemental or salts of mercury) and arsenic as As(III) (as
opposed to As(V)) are more soluble and more easily
transportable in biological systems leading to greater toxicity
concerns.®® Furthermore, metal ions can interact with
sulthydryl groups found on proteins and enzymes, which can
lead to the suppression of antioxidative processes and
depletion of thiol-containing oxidants and enzymes, such as
glutathione, and can result in the disruption of essential
metabolic functions in the mother and/or the fetus.*® As, Cd,
Cr, Pb, and Hg are discussed in more detail below, and Table 3
contains an overview of known adverse reproductive effects for
a variety of other heavy metals.

One of the most common global environmental metal
contaminants, arsenic is commonly found in two different
oxidation states as arsenate (As(V)) and arsenite (As(III)), the
latter being the more toxic form and a known carcinogen.'*’
Inorganic arsenic takes the forms of oxides, sulfides, and salts
of copper, calcium, sodium, and iron, among others; organic
arsenic takes the forms of methyl arsenates.*® Arsenic has been
shown to have endocrine disrupting properties in chicken
embryos.”* In humans, arsenic is known to cross the placenta
and has been found in fetal tissue.'”' Exposure to arsenic at
levels higher than 10 ug/L in drinking water has been linked to
an increased risk of spontaneous abortion, while other adverse
outcomes such as stillbirths, neonatal death, hypertension
during pregnancy, and gestational diabetes have also been
reported.”””” Impaired growth and development including
fetal malformation and increased risk of fetal and infant
mortality have also been reported due to arsenic exposure.” ™
When arsenic reacts with an acid, it forms a toxic gas arsine
(AsH,), a colorless, nonirritating gas. After entering the blood
stream via inhalation, it can damage red blood cells and is fatal
to adults at high doses (30 min exposure 25—50 ppm).*’
Increased risk of spontaneous abortion in women exposed to
arsine in the work place has been reported, though the studies
have limitations due to sam4ple size and lack of data about
exposure to other chemicals.™

Cadmium can accumulate in the liver and kidneys, where it
has been shown to be highly toxic.**'** The placenta appears
to inhibit cadmium transport into fetal circulation since higher
concentrations were reported in the placenta than in cord
blood.* In fact, cadmium concentrations in the placenta have
been shown to be 10 times higher than in maternal blood and
100 times higher than in cord blood, suggesting cadmium
accumulation in the placenta.”” Cadmium can lead to both
reproductive and developmental effects on the fetus. Cadmium
reproductive toxicity is linked to its endocrine disrupting
activity and its effect on hormone production and bindin
capacity (especially progesterone and leptin).>®%%!!"1%3
Cadmium is a metalloestrogen, with one study showing that
it acts as an estrogen receptor agonist in rats (also see Section
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2.4 on endocrine disruptors).'”> While cadmium accumulation
in fetal and embryonic cells is limited, it can interfere with
DNA and protein synthesis.”” Exposure to cadmium via
injection has been linked to retardation, malformations, and
even embryonic death in rats, malformations in hamsters, and
retardation and malformations in mice.”” Further, cadmium
concentrations in the placenta, cord blood, and maternal blood
have been reported to inversely affect birth weight””” and
length in humans.'*>'"!

Chromium is found in the environment in all oxidation
states between Cr?** and Cr®, but the most common forms are
trivalent chromium (Cr®*) and hexavalent chromium (Cr").
Cr’* is an essential nutritional supplement and plays an
important role in glucose metabolism,” yet exposure to excess
levels of Cr** can result in toxicity. Cr®" is the more toxic form
mainly due to its higher cell membrane permeability in
comparison to Crt% Cr* is a strong oxidizing agent, which
can form ROS inside cells, causing oxidative stress and DNA
and protein damage.®® In rats, ingestion of Cr®* (250, 500, or
750 ppm as potassium dichromate, K,Cr,0,) three months
prior to gestation showed reduced implantation of fertilized
eggs (increased resorptions), reduced number of fetuses, and
pre- and postimplantation losses.'”’ Fetal effects included
subdermal hemorrhage on the thorax and abdomen and
skeletal abnormalities due to reduced ossification.'” In
humans, exposure to chromium has been linked to congenital
malformations, low birth weight, and DNA damage in some
studies, while others have not been able to establish such
links 21104124

Fetal lead exposure can be from exogenous sources (i.e.,
environmental exposure), but also from lead stored in maternal
bones from prepregnancy exposures, which can be mobilized
due to metabolic changes that take place to compensate for
calcium deficiencies during pregnancy.””’>”*'** This latter
endogenous exposure mechanism could account for 10—88%
of lead found in the blood stream of pregnant women and is
one of the reasons that lead exposure prior to pregnancy is a
major concern (also see Section S on the exposome).go Once
in the maternal blood stream, lead has been reported to be
transported across the placenta via active transport'>> or via
passive diffusion and can alter calcium-mediated cellular
processes in the placenta.”” Positive correlations between
maternal blood concentrations and placenta concentrations
have been reported.”> However, other studies have reported
lower lead concentrations in the placenta than in both
maternal or cord blood indicating that lead may not
accumulate in the placenta and passes through to the
fetus.””'*® There are also reports that lead can accumulate in
fetal bones and livers at higher concentrations than in maternal
tissue.' > The United States” Centers for Disease Control and
Prevention (CDC) cautions that prenatal exposure to lead in
the range of 5—10 ug/dL'” can result in neurodevelopmental
impairment, increased risk of developmental delay, reduced
IQ, and behavioral problems later in life.'””"'*""" Lead-
induced malformations have also been reported in animal
studies but not in humans.””'** While the evidence regarding
birth outcomes is conflicting, there have been reports that high
levels of lead exposure can lead to higher risk of spontaneous
abortion,?”10*107 miscarriage, stillbirth, preterm deliv-
ery,26'113”126 low birth weight, reduced sperm count, and
prolonged time to pregnancy due to endocrine disrupting
properties in humans.””*>'® Studies have also reported
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reduced maternal fecundity rate with increasing maternal
blood lead level (>20 pug/dL).”

Mercury is the only metal that is liquid at room temperature.
In its elemental form, its toxicity stems from the inhalation
following evaporation, a vapor that is colorless and odorless;
other forms include inorganic and organometallic compounds.
Whether or not the placenta accumulates mercury to lessen
fetal exposure is conflicting: Some studies describe accumu-
lation of mercury in the placenta,92 while others have reported
1.5—3X higher mercury levels in cord blood compared to
maternal blood.”>”’ Mercury mainly targets the brain, kidneys,
and liver. Because of its endocrine disrupting properties,
mercury can affect reproductive processes and lead to impaired
maternal fertility.102 In humans, methyl mercury has been
demonstrated to have inhibitory effects on DNA synthesis of
fetal astrocytes.”” Prenatal exposure to methyl mercury has
been linked to cerebral palsy, mental retardation, and various
other effects on brain function related to motor function,
visual-spatial perception, language attention, and memory even
at low level of exposure.'”® Some studies have also linked
mercury to spontaneous abortion.'*®

2.2.2. Exposure. Modes of exposure to heavy metals are
most commonly via ingestion of contaminated food or water,
through use of household products or through inhalation or
dermal contact either in residential or occupational set-
tings.‘”’102 For a pregnant researcher, oral exposure routes in
the lab are the least likely unless there are circumstances where
metals are retained on the skin and subsequently introduced
accidentally into consumed food or water. Rather, dermal or
inhalational exposure are likely the more common route of
exposure in a lab setting. Penetration of metals through the
skin from occupational exposure of metals such as chromium,
copper, lead, and mercury has been reported.”” For the
inhalation route of exposure, the metal particles are deposited
in the mucosa and transferred into the blood stream.®” Factors
such as particle size, shape, hygroscopicity, and surface charge
determine where particle deposition in the respiratory tract
occurs.” Most larger particles will be trapped in the nose,
throat, and large bronchi or sediment in the alveoli, while
submicron particles can diffuse through these structures.”’
Once deposited, the particles can be absorbed and thus enter
the maternal blood stream. Subsequent heavy-metal exposure
to the fetus can occur through the amniotic fluid, the placenta,
or the umbilical cord.”” Depending on the mode of exposure,
varying effects can be observed. For example, if metals pass
through the placenta, the fetus can be exposed to metals
directly, resulting in direct effects, while accumulation of
certain metals in the placenta can alter the normal functioning
of the placenta itself and interfere with transport of essential
elements, potentially leading to deleterious effects for the fetus.

As metals are a part of our daily lives and ubiquitous in many
industrial processes, workplace guidelines for most heavy
metals and allowable limits of exposure, especially for lead,
mercury, arsenic, and cadmium, are available and can be easily
accessed. The Agency for Toxic Substance and Disease
Registry'® provides information on exposure to various metals
and other toxic agents and compiles information on various
residential and occupational exposure limits for the general
public. Minimal risk level limits for As are below acute oral
doses of 0.05 mg/kg/day and chronic oral doses of 0.0003 mg/
kg/day.'”” The OSHA 8 h TWA exposure limits for general
workplace air quality are 0.01 mg/m® of organo-mercury and
0.1 mg/m*> of Cd fumes and 0.2 mg/m* of Cd dust.*
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However, these are exposure limits for the general worker and
are thus not specific for pregnant researchers. The only CDC
recommendation specifically for pregnant researchers is for
monitoring and follow-up testing of maternal blood lead levels
when found to be higher than or e%ual to S ug/dL (50 ug/L)
to allow for further intervention.''” Dermal exposure can be
reduced through the use of PPE, while protection against
inhalation exposure can result from the proper use of a
respirator considering the metal itself and the particle sizes (for
nano sized metals, see Section 2.3).

2.2.3. Vulnerability. Though there is lack of trimester-based
studies for many metals, there are studies reporting that the
exposure to metal ions during the early gestational period
increased the risk of fetus fatality and developmental
anomalies.””'*>'"” In the first 14 weeks of pregnancy, exposure
to heavy metals, such as lead and mercury, has been linked to
higher rates of spontaneous abortion.””'**'"” Lead transfer
across the placenta has been shown in human fetuses as early
as 14—16 weeks along with increasing concentrations in fetal
tissue with advancing gestational age.125 Further, elevated
maternal blood Pb and Mn levels during the second trimester
may be a significant risk factor for neural tube defects.”® It has
also been reported that the first, early second, and late third
trimester could be heightened windows of vulnerability to
vanadium toxicity and could result in fetal growth impair-
ment.'”” In addition, exposure to heavy metals that have
endocrine disrupting properties can affect the preconception
phase. Snijder et al. have reported that occupational exposure
to lead can have adverse effects on human reproduction
leading to reduced sperm count in males, prolonged time to
pregnancy, and reduced fecundity rate.”

2.3. Engineered Nanomaterials. 2.3.1. Hazard. Engi-
neered nanomaterials (ENMs) are a class of materials with at
least one dimension <100 nm that are manufactured and
designed (as opposed to naturally or incidentally occurring)
for applications due to their high surface area and unique
properties when compared to bulk materials of the same
chemical composition."” ENMs are frequently synthesized
and studied in their own right for the development of novel
materials as well as for utilization in chemical, biological, and
catalytic applications, among others. ENMs are a newer class of
materials but are widespread in chemical laboratories, with
research interest accelerating since the late 1990s and
nanotechnology research initiatives established in almost all
industrialized nations by the early 2000s."*

Since ENMs are an emerging class of materials, pregnancy-
related toxicological information is nascent. Existing literature
mainly covers animal studies and a few in vitro human placenta
studies,"*""** but collective evidence points to occupational
exposure to ENMs being hazardous to fetal development and
inducing placental stress in certain exposure scenarios.””"**
Due to their nano size, ENMs can cross the placenta, enabling
potentially deleterious direct contact with the fetus and
internalization in placental and fetal cells. In contrast, this
ability has also been identified as medically beneficial and has
resulted in proposals for targeted transplacental drug delivery
to treat pregnancy complications, prevent 6preterm birth, and in
some cases increase fetal health.””'**~"*® The mechanism of
transplacental passage depends on the size of ENM, with
extremely small particles (typically <25 nm) crossing by
paracellular passage and lar§er nanomaterials crossing by
vesicular transport (Figure 3).”* Many types of ENMs have the
ability to create ROS which cause oxidative stress in cells,
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leading to effects such as cell apoptosis and inflammation."*’”

Some ENMs have also recently been identified as endocrine
disruptors (also see Section 2.4).'%%"%*

It is important to note that ENM toxicological effects (or
lack thereof) vary widely based on many factors, complicating
concise hazard information or single recommendations for safe
work. ENMs encompass an extremely broad and diverse set of
material compositions or types (e.g., carbon-based materials:
carbon nanotubes, fullerenes, etc.; metal nanoparticles: gold,
silver, copper, etc.; metal oxide nanoparticles: titanium dioxide,
silica, ceria, iron oxides, etc.) that each have unique
characteristics (e.g., size, shape, surface functionality, surface
charge, crystallinity, solubility, aggregation behavior, etc.).
Changing the material composition or a single characteristic of
the same material can alter its properties substantially,
including potential fetal toxicity.'”” For example, despite
having the exact same chemical formula, titanium dioxide
(TiO,) nanoparticles have differing toxicities based on
crystalline structure and the subsequent ability to produce
more ROS and resulting oxidative stress.'*" Silica (SiO,)
nanoparticles showed different effects in mouse models based
on size, dose, and surface functionality including fetal
resorption (miscarriage) and restricted fetal growth but only
at sizes <100 nm, at the highest doses, and without surface
functionalization."”” In several studies, incorporating surface
coatings on ENMs was a way to reduce toxic effects; for silica
nanoparticles, adding a surface coating of carboxyl or amine
groups eliminated detrimental effects.””” In addition, modify-
ing the surface of single-walled carbon nanotubes with
polyethylene glycol significantly reduced their cytotoxicity.'*’

Some general conclusions can be drawn, such as that size
and surface coating are the most significant factors driving
ENM induced embryonic toxicity and ability to cross the
placenta and that ROS generating ability, aggregation behavior,
and others factors also contribute, yet inconsistently across
nanomaterial types. Typically, smaller particles were more toxic
than larger particles, but for example, for silver nanoparticles,
larger particles were more toxic than smaller ones at the same
concentration.'”? Several reviews exist that cover the
pregnancy-related health effects of many common ENM
compositions and characteristics (reviews with many ENM
types; > reviews with specific ENM composition
information: Carbon-based ENMs,"*" platinum nanopar-
ticles,"** silver nanoparticles,"** titanium dioxide nano-
particles'*’), yet the field is continuing to evolve quickly
with the introduction of novel ENMs.

2.3.2. Exposure. Safety guidelines for nanomaterials are
lagging behind more traditional chemicals for the general
researcher, with a 2010 survey of university and public research
laboratories worldwide showing 90% of respondents being
unaware of local or national regulations for safe handling of
nanomaterials and almost three-quarters reporting having little
or no awareness of internal or lab scale rules.'** Since then, the
EU and the US have issued guidance on nano safety practices
through ECHA'** and NIOSH,'* respectively, but recent
surveys in other regions continue to show a lack of awareness
of nanomaterial-specific safety and health policy plans.'**'*’
Guidelines on ENM exposure specific to pregnant researchers
are further lagging, although the routes of ENMs exposure are
well-established including dermal and via inhalation.'*>">
There are some studies on dermal exposure, mainly focusing
on metal oxide nanoparticles in cosmetics, with the general
conclusion that nanoparticles do not pass through human skin
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immediately or with short duration exposures, but with
repeated exposure can penetrate deeper into the skin and
become internalized (e.g, 4.7—6.1% 4 mm diameter titania
nanoparticle cosmetic applied directly to skin of pigs for 22
days resulted in skin 4penetration, 60 days of exposure resulted
in internalization)."*”'>"'>* Therefore, avoidance of skin
contact and appropriate PPE are recommended. ENMs in
powder form can become aerosolized and may be suspended
for extended periods of time, resulting in inhalational
exposure.””’ As such, respirators are recommended whenever
in an enclosed laboratory space where ENMs are being used. It
is also preferable to work with powdered ENMs in special
“nano” hoods that are designed to contain ENMs, thereby
preventing their circulation in the laboratory atmosphere."*® A
potentially even more protective route is to suspend ENMs in
water or solvents to prevent aerosolization altogether.

2.3.3. Vulnerability. There is evidence that both fetal
exposure and resulting effects of ENMs are dependent on the
gestational stage in pregnancy. Early evidence of this came
from Yang et al. who investigated gold nanoparticles injected in
pregnant mice at different gestational stages. The study found
that at early stages of a pregnancy, gold nanoparticles
accumulated at similar concentrations in both extraembryonic
tissues and the fetus, while later in a pregnancy after formation
of the placenta, gold nanoparticle concentration in the fetus
dramatically decreased.'>® However, the reduced exposure did
not equate with toxicity outcomes, as there were no observed
adverse effects at any of the gold nanoparticle concen-
trations.'>’ Gestation time influenced toxic effects of zinc
oxide nanoparticles orally administered in mice: No fetal
toxicity was found during early gestation, yet increased toxicity
(i.e., decreased fetal viability) during late gestation after
organogenesis.> "> Stapleton reviewed the effects of a range
of ENMs focusing on exposures related to gestational time
points, specifically at early gestation and midlate gestation
(equivalent to before and after approximately 8 weeks of a
human pregnancy).'>> While Stapleton concedes that the
literature is limited for gestational exposure to ENMs, she
identifies the following trends relying on animal studies, mainly
mouse models.">> During early gestation, inhalation exposure
to some ENMs increased rates of unsuccessful implantation of
embyros.">> After implantation but still during early gestation,
ENM exposure caused effects on maternal vascular develop-
ment in relation to the placenta and severe effects on fetal
development including increased fetal mortality. During
midlate gestation, ENM exposure was dependent on the
ability to translocate across the placenta, and in cases of ENM
accumulation in placental or fetal tissues, increased placental
ROS leading to oxidative stress, low birth weight, reduced fetal
growth, and malformations were reported.'>

2.4. Endocrine Disruptors and Other Chemicals of
Concern. 2.4.1. Hazard. Endocrine disruptors (EDCs) can be
very broadly defined as exogenous substances or mixtures that
interfere with normal, endogenous hormone action and
consequently cause adverse health effects in the person
exposed, or in their descendants.'*® EDCs can both be man-
made or naturally occurring””'*® and can be present in
laboratories as chemicals being used in research or being
studied. EDC exposure can impact the crucial functions that
hormones play in regulating many physiological systems
including in the brain, cardiovascular system, thyroid, pancreas,
and importantly, the ovaries and uterus in females and testes
and prostate in males.”*">” As a result, a wide variety of
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radiation. Noted are some common radiation sources, including ones found in chemical laboratories.
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negative health outcomes have been reported and are the
subject of ongoing research including studies into the impacts
of EDCs on reproductive health, thyroid-related disorders,
hormone-related cancers, bone and metabolic disorders, and
others summarized elsewhere."**'*”'*” Some of the better-
studied EDCs include the bisphenol monomers such as
bisphenol A (BPA),"*”~'%* phthalate plasticizers,'>*'¢"!¢¥1¢*
pesticides such as dichloro-diphenyl-trichloroethane (DDT)
and atrazine,'*”'*>'%® polybrominated diphenyl ether (PBDE)
flame retardants,'*”'®” the environmentally persistent poly-
chlorinated biphenyl (PCB) and dioxins,"> the antibacterial
triclosan,®® paraben preservatives,161 heavy metals such as
lead, mercury, cadmium, and arsenic’* (also see Section 2.2),
and most recently perfluorooctanoic acid (PFOA) and other
per- and polyfluorinated substances (PFAS)."*”'®” Another
recent debate revolves around potential endocrine effects of
the herbicide glyphosate.'”” Beyond these notorious com-
pounds, there are hundreds of compounds used in applications
ranging from pharmaceuticals and personal care products to
pesticides, industrial chemicals, metals, as well as naturally
occurring compounds that have been identified as
EDCs.””"'~'73 Given the sheer number of compounds that
can be classified as EDCs, this review cannot provide a
complete overview, but pregnant researchers should be
particularly prudent when research is carried out on
compounds with known bioactivity or endocrine disrupting
ability, such as pharmaceuticals, pesticides, herbicides,
fungicides, and others listed previously. This prudence should
also extend to laboratory work involving precursors or
degradation products of the above-mentioned classes of
compounds, as these can be bioactive or endocrine disrupting
themselves.

Of particular concern is prenatal exposure to EDCs in utero
via transfer from the place:nta,l74’175 which can impact the
crucial development phases of the embryo, often perma-
nently.*” Animal studies (both mouse and rat) have shown that
in utero exposure to EDCs can result in extreme, immediate
effects such as pregnancy loss,'’® as well as effects that only
become apparent during later stages in life from alterations in
the hormonal balance such as early puberty, behavioral
changes, altered breast development, and increased suscepti-
bility for mammary cancer in female offspring; and reduced
anogenital distance, delayed puberty, decreased fertility, and
spermatogenesis in male offspring.">” Adverse effects can even
be passed on to following generations through epigenetic
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o 157,165,177 :
modifications.”””">”""’ In humans, in utero exposure to the

EDC, diethylstilbestrol (DES), which was prescribed to
pregnant women in the US until 1971 in the hopes of
preventing miscarriages (it was shown that it in fact did
not),"”® led to higher incidences of rare cervicogenital cancers,
decreased fertility, and early menopause in daughters of
women who used DES during pregnancy.'*>'”’

2.4.2. Exposure. Chemical scientists and laboratory workers
were among the 16% of jobs identified with probable exposure
to endocrine disrupting chemicals based on a job-exposure
matrix study of 348 occupations.'®” While exposure is
probable, principal exposure in a chemical laboratory setting
can be reasonably expected to stem mainly from inhalation,
while dermal or oral exposure should play lesser roles when
following typical safety protocols, as described earlier. Much of
the known effects of EDCs are connected to oral exposure
routes (e.g, orally administered DES, plasticizers in food or
beverage containers, or EDC contaminated drinking water),
and a few studies investigating occupational exposure show low
risk of adverse birth outcomes.'®"'®” For example, a meta-
analysis of maternal occupational exposure to EDCs of
approximately 134,000 mother-child pairs in Europe showed
an association with increased risk of low birth weight when
exposed to one or more EDCs, but did not find associations
with length of gestation or preterm delivery.'®" The risk of low
birth weight increased with exposure scenarios with more types
of EDCs, up to four or more EDCs."*® Another study of over
500 Danish women potentially exposed to EDCs showed no
indications of reduced birth weight or increased risk of preterm
birth compared to control groups.'® Although these studies
indicate low risk of adverse birth outcomes, due to the known
adverse effects of EDCs on reproduction and development
during exposure in utero and the lack of long-term results on
offspring from occupational exposure, avoidance, substitution,
or extreme caution is recommended when working with any
known or suspected EDC in a chemical laboratory in general,
and particularly during pregnancy.

2.4.3. Vulnerability. Specific vulnerability windows impact-
ing the fetus’ reproductive health are one of the main concerns
about prenatal exposure to endocrine disruptors. Experiments
with the known antiandrogens vinclozolin and some phthalates
(e.g, benzylbutyl phthalate, dibutyl phthalate, di-2-ethly hexyl
phthalate, and di-isononyl phthalate) have shown that the most
sensitive period for fetal development is around gestational
days 14—19 in rats, which corresponds to the “third trimester”
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of the approximately 21-day long gestational period of
rats.”**>1°%19% Byrther, exposure to endocrine disruptors can
result in permanent detrimental effects from the fetal stage
through sexual maturation during puberty.'®*'**'** Such
permanent changes can potentially be quantified following
exposure, but may also become apparent only during
adulthood.'®”'® In contrast, effects from exposure to
endocrine disruptors such as BPA during adulthood may be
reversible."®” Nonetheless, endocrine disruptors can not only
impact the reproductive health of the child pre- and
postnatally, but they can also impact the preconception
stage, including the ability of the couple to achieve a
pregnancy, with the fertility of both partners potentially
affected by endocrine disruptors.'**™""" For additional
information, the Endocrine Disruption Exchange has an
interactive timeline showing critical windows of developmental
vulnerability as related to the development of the central
nervous system, female and male reproductive systems, the
endocrine system, the immune system, and other systems for
the following EDCs: bisphenol A, dioxin, phthalates,
chlc))rzayrifos, and PFAS (poly- and perfluoroalkyl substan-
ces).

3. LABORATORY RADIATION RISKS

During certain tasks in chemical laboratories, pregnant
researchers can be exposed to radiation. Radiation hazards
include equipment and materials that produce either ionizing
or nonionizing radiation (Figure 4). The following sections
discuss these hazards as they relate to laboratory exposure and
the potential impacts on pregnancy.

3.1. lonizing Radiation Producing Equipment and
Materials. 3.1.1. Hazard. Ionizing radiation hazards are
present in chemical laboratories in the form of equipment and
radioactive materials. Common laboratory equipment sources
of ionizing radiation in the form of X-rays include X-ray
diffraction (XRD), X-ray fluorescence (XRF), X-ray photo
spectroscopy (XPS) and electron microscopes (SEM and
TEM) in specific X-ray modes. In these instrument, X-rays are
produced internally, and especially in older equipment, there is
a potential for these to escape through weak points; newer
equipment is typically adequately sealed with no X-ray
leakage.'” Electron beam equipment, such as probes and
welders, can emit small levels of y radiation. Furthermore, at
larger specialized facilities, linear particle accelerators, ion
implanters, cyclotrons, synchrotrons, and other electron ion
accelerators can also emit ionizing radiation.

In contrast to equipment that only produces radiation when
energized (i.e., turned on), some materials can continually emit
ionizing radiation through radioactive decay.'””'”* These
materials are referred to as radionuclides, such as tritium
(®°H, often in the form of tritiated water,  emitter), carbon-14
(**C, p emitter), phosphourus-32 (**P,  emitter), sulfur-35
(S, B emitter), nickel (**Ni, 8 and y emitter; ®*Ni, § emitter),
iodine-125 (**I, y emitter), and americium-241 (**'Am, «
emitter). There are several other radionuclides, but use of
these materials often requires special permission from
governments and they are not likely to be in the average
chemical laboratory.'” Radioactive compounds are used as
tracers or stains in experiments and in trace amounts in
equipment, like household smoke detectors containing **'Am
or gas chromatography detectors utilizing *H or ®*Ni."*

Effects of ionizing radiation on humans are relatively well-
documented and thoroughly researched with data available
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from radioactive incidents (e.g., Hiroshima, Nagasaki,
Chernobyl, etc.) and medical occupational exposure (e.g.,
interventional radiology and cardiology), including effects
related to pregnant women and embryos/fetuses.”>"*>'%¢
Some ionizing radiation exposure can result in harmful effects,
most commonly embryo/fetal lethality, organ malformations,
intrauterine growth retardation, mental impairments, genetic
anomalies, and childhood cancers.”'*> These effects occur
because ionizing radiation can cause direct cell and DNA
damage. These severe effects are highly dependent on exposure
dose and gestational age as explained below. It is also
important to note that while for radiation-producing equip-
ment, doses to the fetus are related directly to the exposure
level for the mother, exposure to radionuclides is more
complex, as these can accumulate in the fetus (including
postnatally during breastfeeding), which can lead to higher
direct exposure of the fetus than the mother.”"'*®

3.1.2. Exposure. Exposure to radiation is dose-dependent
and expressed in either exposure dose (common unit:
Roentgen, R; SI unit: C/kg), absorbed dose (common unit:
Rad, rad; SI unit: Gray, Gy), or equivalent dose (common
unit: Rem, rem; SI unit: Sievert, Sv). Absorbed dose (Gy)
describes the amount of radiation energy absorbed by the mass
of tissue regardless of the type of radiation, while equivalent
dose (Sv) incorporates weighting factors for each type of
radiation (e.g.,, a-particles > f particles > y rays) and type of
tissue to calculate a full body dose.”' Exposure recommenda-
tions are typically given as an equivalent dose in mSv, while
studies typically report absorbed dose in Gy as a threshold
dose—the dose level below which no adverse effects were
observed.

The United States Nuclear Regulatory Commission
recommends that the pregnant worker should not be exposed
to more than 5§ mSv per pregnancy with a limit of 0.5 mSv/
month.” The International Commission of Radiological
Protection recommends that exposure not exceed 1 mSv
during pregnancy, which is consistent with the US National
Council on Radiation Protection.'”® Studies show no evidence
that embryonal/fetal doses of 0.1 Gy or less (equivalent to 100
mSv for y radiation and biological tissue) are associated with
negative effects,””' but there are still many uncertainties about
the ramifications of prenatal radiation exposure, which explains
the radiation exposure recommendations of <5 mSv total per
pregnancy.21’197

Exposure to a pregnant researcher inside a chemical lab is
likely no larger than what can reasonably be expected for an
occupational or diagnostic radiation professional. For refer-
ence, a single, direct chest X-ray is 0.1 mSy;'® occupational
exposure for interventional radiologists with 1 mm-thick lead
protection was measured at 0.03 mSv/month;® and the self-
reported normal background radiation of an XRD lab was
0.0002—0.0005 mSv/hr, resulting in a maximum exposure of
0.12 mSv/month (assumin§ maximum accumulative exposure
for 8 h days for 30 days)."”” A recent review recommended a
three-pronged approach to safe work “using dosimetry data as
a guide, tailoring use of personal and ancillary lead shielding,
and active [laboratory] practices that can minimize occupa-
tional dose”.® Shielding is often sufficient to keep fetal
exposure below dangerous levels and can be achieved through
individual or combinations of shielding materials and forms."
In addition to wearing appropriate shielding, OSHA guidelines
more broadly recommend minimizing the time spent in areas

https://doi.org/10.1021/acs.chemrestox.1c00380
Chem. Res. Toxicol. 2022, 35, 163—198


pubs.acs.org/crt?ref=pdf
https://doi.org/10.1021/acs.chemrestox.1c00380?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Chemical Research in Toxicology

pubs.acs.org/crt

REVIEY

with elevated radiation levels and maximizing the distance
from radiation sources.”'”*

3.1.3. Vulnerability. Windows of vulnerability for high doses
of ionizing radiation are better understood and more clearly
defined due to (the unfortunate) availability of data from
radioactive incidents. A pregnancy is particularly vulnerable to
radiation in the first two weeks after conception when the
principal effect of radiation exposure is failure of embryo
implantation and early abortion at a threshold dose of 0.1
Gy.”""?>?° During the organogenesis period, radiation
exposure can cause intrauterine mortality at a threshold dose
of 0.1-0.5 Gy and organ malformations at a threshold dose of
0.05—0.5 Gy."” Important brain development occurs between
10 and 27 weeks, when increased risk of intrauterine mortality,
severe mental retardation, seizures, and reduced IQ_can occur
at a threshold dose of at least 0.1 Gy.'”® The developing brain
gradually becomes less radiosensitive around 18 weeks when
the threshold dose increases to 0.3 Gy.'”® After 27 weeks, the
central nervous system becomes relatively more radioresistant
with no cases of severe mental retardation observed in children
from Na§asaki and Hiroshima exposed only after 27
weeks.”""'”>** For miscarriage/intrauterine mortality, the
threshold dose needed for increased risk rises as pregnancy
progresses, where a dose of 0.1 Gy is associated with higher
risk in implantation at weeks 2—4, 0.1-0.5 Gy from weeks 5—
27, and >1.0 Gy past 27 weeks to full term.'”> Generally
speaking, there is little evidence of increased risk from ionizing
radiation to pregnant researchers at below these threshold
doseSIS,Zl,l‘)S

3.2. Non-lonizing Radiation Producing Equipment.
3.2.1. Hazard. In chemical laboratories, some distinct
nonionizing radiation producing equipment include heat
lamps, lasers, and spectroscopy equipment like ultraviolet—
visible, Fourier-transform infrared, and nuclear magnetic
resonance (NMR). The CDC states that most common
nonionizing radiation from radio frequencies (RF) to ultra-
violet (see Fi%ure 4) is not considered uniquely hazardous to
pregnancies.”'”> The only unique concern is the ability of
nonionizing radiation to generate heat. Depending on
wavelength, direct exposure to nonionizing radiation can
potentially result in an increase of maternal internal body
temperature, which can be hazardous to a developing fetus
(also see Section 4.2 on heat stress).”'”*

Types of nonionizing radiation that pregnant researchers
may be in contact with are ultrahigh magnetic fields (UH-MF)
coupled with the RF range (see Figure 4) in NMR or MRI and
extremely low frequency magnetic fields (ELF-MF) from
electronic equipment. UH-MFs are utilized in magnetic
resonance equipment like NMR in chemical laboratories and
MRI in medical facilities. Although the majority of literature
focuses on the safety of a direct MRI scan and MRI
occupational exposure for pregnant women rather than
NMR, the core technology is the same so comparisons can
be drawn.”*"*”> Both NMRs and MRIs utilize more than one
magnetic field to acquire data or images, including a high
strength, static field, and a relatively low strength RF field.
NMR and MRI machines are often referenced by their static
magnetic field strength which, along with the molecule being
measured, determine the operating frequency of the RF field
used during measurement. Static magnetic field strengths range
from 2.3-23.5 T for NMRs and 1.5-10.5 T for MRIs.””” RF
fields are present during the spectroscopy/imaging process and
range in frequencies of 10—1000s of MHz and field strengths
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on the order of 1-100 xT. While the RF field is lower than the
static field, its operating frequency causes the potential for
maternal heating. However, both animal and human studies on
MRIs do not indicate an increased risk of adverse outcomes. In
a study on mice exposed to 75 min daily of 1.5 or 7 T UH-MFs
(a direct MRI scan) during pregnancy, no effects were
observed on pregnancy rate, duration, litter size, malforma-
tions, sex distribution, or postpartum death of offspring.””” A
2020 literature review of pregnant women concluded that
“MRI does not pose any known risks to the fetus though
longitudinal data are lacking”.”**

Regarding ELF-MFs, there is much debate since a 1979
study showed higher incidences of childhood leukemia in
children living in close proximity to power transmission lines,
with the hygothesis that it was linked to ELF-MF
exposure.””>*"° To date, no mechanism has been conclusively
identified for if or how ELF-MF nonionizing radiation causes
cancer, although it is labeled “possibly carcinogenic” by the
WHO’s International Agency for Research on Cancer.””’
Studies into ELF-MF nonionizing radiation and pregnancy
have shown varying results, with some indicating increased risk
of miscarriage and decreased fetal growth.”*>*°7?% As
exposure to ELF-MF occurs in, but is not unique to, chemical
laboratories, pregnant researchers should be aware of it and are
referred to other references and reviews.”*>*?7*%%

3.2.2. Exposure. Exposure guidelines do not exist for NMR
occupational exposure, but the American College of Radiation
guidance document on magnetic resonance safety states that it
is permissible for pregnant healthcare practitioners to work in
and around MRIs as long as they do not remain within the
MRI scanner bore during the data acquisition period.””” This
recommendation stems from the fact that the strength of the
static magnetic field fades as one moves farther away from the
magnetic source. The strength of magnetic fields is inversely
related to distance from the magnetic center cubed (1/r°). The
American College of Radiation also states that research has
shown no harmful effects to the fetus from exposure to a
magnetic field lower than 3 T.2% In addition, newer NMR
equipment (since 1995) usually integrates active shielding that
limits stray magnetic fields, so the rated maximum field of the
instrument is likely not the field being experienced in the
environment next to the magnet.”’”

3.2.3. Vulnerability. To our knowledge, there are no
trimester-based studies that directly address magnetic field
exposure from NMR. For MRI, nearly all of the reviewed
studies considered data from second and third trimesters, most
likely due to policies and recommendations against MRI scans
in the first trimester.”’* For example, in the UK, it is currently
not recommended to collect MRI scans in the first
trimester,”"" although it remains unclear what studies are
being used to support this recommendation. Interestingly, a
small study of women who received an MRI in the first
trimester before their pregnancy was known showed no
adverse outcomes.””*

4. LABORATORY STRESSORS

Perhaps surprisingly, even the ambient state of some laboratory
environments may pose risks that adversely affect pregnancies.
Less obvious than chemical or radiation hazards, latent
stressors such as excessive noise or heat, strenuous physical
work, abnormal experimental schedules, or conventional
psychosocial stress, should be mitigated for pregnant
researchers.
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4.1. Noise Stress. Sonicators, centrifuges, pumps, vacuum
systems, and venting liquid nitrogen tanks are often staples in
chemical laboratories and may generate dangerous levels of
noise. A “loud” environment is defined at 90 dB by OSHA and
85 dB by the American Conference of Governmental Industrial
Hygienists as the threshold noise level for an 8 h TWA shift to
prevent work-related hearing loss.”'’ Since wearing personal
protective equipment such as hearing protection does not
protect the fetus, noise reduction should be sought via
substitution with quieter equipment, installing noise shielding,
or other mitigation measures. The fetus’s developing hearing
system is more sensitive than a fully developed one, and the
fetus has mostly developed ears by week 20 and starts to
respond to external sounds by week 24. While the womb does
provide some noise shielding mostly to high and medium
frequency sounds, it does not provide sufficient protection
against excessive noise and leaves the fetus particularly
vulnerable to low frequency sounds. Selender et al. performed
a population based cohort study that included over 1.4 million
births from mothers with occupational exposure to noise at
levels <75 dB, between 75 and 85 dB, and >85 dB.>'° This
study showed an association between maternal exposures to
>85 dB and hearing dysfunction in children, with a stronger
association with more days worked in the loud environment,
and no association for noise levels below 75 dB. Some limited
evidence shows a slightly increased risk of low birth weight or
preterm birth at levels exceeding 85 dB, but studies are
inconclusive with others showing no increased risk.”>*""*'*
More research is needed to identify an appropriate noise level
limit in the 75—85 dB range and to determine whether
exposure during early pregnancy is as detrimental as during
later stages in the pregnancy after fetal hearing has developed,
but reducing the noise level to under 75 dB is advisable based
on the available data.

4.2. Heat Stress. Prolonged exposure to hot environ-
ments—whether around ovens, reactors, nonionizing radiation
producing equipment, or nonair-conditioned laboratories
during the summer—can induce heat stress in pregnant
researchers who are more vulnerable to heat as their bodies
need to work harder to cool down compared to nonpregnant
people.” According to the CDC, heat stress, defined as any
work situation that causes body temperature to exceed 39 °C
or 102.2 °F, can lead to heat stroke, exhaustion, or dehydration
in mothers and correspondingly has been linked to
reproductive issues and birth defects in the fetus.” Beyond
the recommendation not to exceed a maternal 2 °C body
temperature increase, fetal health effects of heat exposure are
less defined. A recent review on extreme ambient heat and
pregnancy outcomes in studies that combine a population-
based approach with geographic temperature data showed that
maternal exposures to extreme heat can be associated with
preterm birth, low birth weight, stillbirth, and congenital heart
defects.”'” Windows of higher vulnerability for preterm birth,
low birth weight, and stillbirth, appeared during exposures in
the third trimester, while for congenital heart defects,
exposures in weeks 2—8 were most important as the fetal
heart is developing in this time frame.”"> The review did not
identify temperature-related risks on the individual level as
many of the evaluated studies defined “extreme heat” as
relative to the preceding week’s temperature conditions or
relative to geographic location.”*® Therefore, no single
recommendation for “acceptable” heat can be made.
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4.3. Psychosocial and Physical Stress. Stress related to
work, a type of psychosocial stress, can disrupt the endocrine
system due to a heightened stress response (often leading to
irregular menstrual cycles in women).”””'* Recent evidence
suggests psychosocial stress during pregnancy may induce
stress responses and affect androgenic activity in the
developing fetus, potentially leading to negative birth out-
comes including preterm delivery, low birth weight, and
spontaneous abortion.*>**~*'” Reviews on psychosocial stress
and pregnancy outcomes examined both acute psychosocial
stress (e.g., stress related to an earthquake disaster or the 9/11
terrorist attack) and chronic psychosocial stress (e.g., anxiety,
household stress, job stress, among others).*>*'*~*!'" While for
acute stress, some evidence of association with negative birth
outcomes was shown, particularly when experienced in the first
trimester, literature on chronic psychosocial stress contained
conflicting outcomes. There was evidence of a modest
association of increased risk for preterm birth and low birth
weight, but little evidence of increased risk of spontaneous
abortion with some studies showing no associations with
chronic stress.”>*'*~*'7 Chronic stress experienced in the third
trimester (week 30) had a higher risk of preterm birth than in
the second trimester (week 16).”"” A caveat to these studies is
that work-related stress is just one of many stressors, making it
difficult to attribute increased risk directly to specific work-
related stress.

Physical stress such as heavy physical work, heavy lifting,
prolonged standing, and long or irregular work hours contains
some risk of undesired birth outcomes and has been reviewed
in detail *>'%%*'® Specifically, heavy physical work, frequent
heavy lifting, and prolonged standing have been implicated in
low birth weight, preterm birth, and spontaneous abortion, but
with only modest risk.'”**'® Frequent heavy lifting has been
linked to spontaneous abortion and is of particular concern
during the third trimester, with increased risk for early uterine
contractions and preterm birth.”® Working in a lab can lead to
abnormal hours, and working nights or irregular hours can
affect the pregnant researcher’s circadian rhythm and
contribute to spontaneous abortions.”® The study cohorts
where these effects were observed were in fields where
pregnant women were consistently subjected to heavy physical
stress (e.g, nurses lifting and moving patients daily), which
may or may not be applicable to pregnant researchers in
laboratories.

5. MOVING BEYOND CONVENTIONAL RISK
ASSESSMENT

Exposure to endogenous chemicals during pregnancy and
lactation is ubiquitous.”'® Research based on representative
sampling of the population at large®" has documented that
virtually every pregnant woman in the USA has at least 43
different environmental chemicals in her body and that
persistent organic pollutants are found in pregnant and
lactating women across the globe.””** A report by the US
National Cancer Institute found that “to a disturbing extent
babies are born ‘pre-polluted”’.221 However, conventional risk
management for pregnant researchers typically entails review-
ing anticipated laboratory situations and generating a “safe
work” plan. This approach has significant limitations as
exposures in lab are compounded by additional exposures
over one’s entire lifetime, and fetal windows of vulnerability
have yet to be identified for many hazards. As evidenced by
this literature review and mentioned elsewhere,”>**** the vast
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majority of available reproductive and developmental toxicity
studies examine single exposures—in both time and hazard—
and the resulting adverse effects are often observed in animal
models that do not necessarily translate into similar effects in
humans."”® In reality, multiple exposures can occur simulta-
neously, often with unknown combinatorial effects including
antagonistic, additive, or synergistic interactions (“cocktail
effects”).””* For EDCs and neonatal effects specifically, a
recent study reported that being exposed to an EDC mixture of
four or more versus a single EDC increased risk of low birth
weight.181 Yet, for many emerging contaminants of concern, it
is difficult to draw firm inferences at present about issues such
as critical dose and the period(s) of greatest vulnerability.”**
These examples emphasize the increasing importance to
expand the current state of science as it relates to the
toxicological implications of chemical mixtures and windows of
vulnerability, especially those related to prenatal exposures.
Efforts to describe one’s complete risk profile have been
enhanced with the introduction of the concept of the
“exposome,” defined as each person’s unique entire lifetime
environmental exposures from conception onward (a comple-
mentary concept to each person’s unique genome).””° The
exposome addresses the need to move beyond single exposure-
health effect relationships by incorporating the complexity of
exposures through time and to mixtures of multiple substances
and environmental factors (Figure S5). Current exposome
studies, such as the ongoing Human Early-Life Exposome
prospective study,””>** incorporate many hazards simulta-
neously, amassing external environmental factors like atmos-
pheric pollutants, noise, temperature, and community features
like green spaces with internal environmental exposures like
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water pollutants, chemicals, and lifestyle choices. These
exposures are studied starting from the prenatal period into
childhood along with varying health outcomes.”****>**7**¢
While these studies help to understand the effects of prenatal
exposure on the pregnant researchers’ developing fetus, a
better understanding of pregnant person’s exposome would be
important to better assess and predict potential effects on the
pregnancy and child health.

Exposome studies have begun to make linkages between
specific environmental factors (e.g, workplace), general
environmental factors (e.g., social capital, urban environment),
and internal factors (e.g, transcriptomics, metabolomics) to
inform individual health risk assessments and impact outcomes
(Figure 5).***° It is important to note that this review only
covers a small portion of specific environmental factors within
one’s exposome and that other specific and general environ-
mental as well as individual factors will also impact the course
of a pregnancy (Figure S). Additionally, the exposome
paradigm elevates the importance of intersectionality when
considering compounding exposures and increased baseline
vulnerabilities related to race, gender, sexual orientation, and
socioeconomic status.”””**" For example, it is well established
that industrial facilities, sources of external environmental
exposure, are historically more likely to be located in minority
and/or low income communities,””” *** thereby leading to
adverse health and well-being outcomes (Figure S). These
profound issues of environmental justice have complex
interactions with questions related to who is over- and
underrepresented as laboratory researchers due to access,
opportunities, and wellness warranting further exploration and
are worthy of their own study and critical review.
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Finally, for many hazards, there is often insufficient
information regarding reproductive toxicity and resulting
pregnancy outcomes in general, and specific windows of
vulnerability in particular. Addressing these presents a
significant opportunity for advancing computational toxicol-
ogy, high-throughput screening, and predictive modeling. As of
2011, the US Environmental Protection Agency’s ToxCast
project began profiling the in vitro bioactivity of chemicals to
assess pathway-level and cell-based signatures that correlate
with observed in vivo toxicity to reveal meaningful mechanistic
relationships and providing models to identify chemicals with
potential developmental toxicity.”>> While advances in these
areas will inform further studies to elucidate risk concerns, the
anatomic, physiologic, and pharmacologic complexities of the
systems at play as well as the varied potential compensation
mechanisms are not yet able to be sufficiently well-modeled to
enable a conclusion of safety.”*° However, there remains
significant promise of the potential of these advanced
techniques to identify stressors of concern from a devel-
opmental toxicity perspective as well as generate far more
granular data in terms of timing of exposures and windows of
vulnerability. Of course, the highest value of this new
knowledge will be to inform the design of safer chemicals
with reduced or eliminated inherent hazards, thereby reducing
or eliminating potential developmental risks to pregnant
individuals and their offspring, including lab researchers.' "**”
Through the development and implementation of green
chemistry, benefits accrue not only to pregnant researchers
and their future offspring but also to the broad research
community and society at large, the ultimate end users of the
discoveries, as well as historically disadvantaged communities
in the vicinities of chemical production facilities. Further, safe
chemicals and chemical processes will lead to overall gains in
public and ecosystem health in support of a more sustainable
future.
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